COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf = error carried forward
bod = benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
1.			 or		1		1		
2.		2-methylbut-1-ene		1		1			
3.		$\cdot{ }^{-} \mathrm{CH}_{2} \mathrm{~F}$ and $\mathrm{Cl} \cdot$ accept structural formula for fluoromethyl radical		1		1			
4.				1		1			
5.		one of the carbon atoms of the double bond has two atoms the same		1		1			
6.	(a)	the $\mathrm{CH}(\mathrm{OH})$ carbon atom is a chiral centre (could be shown on the formula)		1		1			
	(b)	the enantiomers will rotate the plane of polarised light in the opposite direction	1			1			
7.	(a)	it contains the $\mathrm{CH}_{2} \mathrm{OH}$ group	1			1			
	(b)				1	1			

Question			Marking details			Marks available								
			A01	AO2	AO3	Total	Maths	Prac						
8.	(a)					silver mirror (1) the aldehyde group acts as a reducing agent and reduces Ag^{+}to Ag (1)			2			2		1
	(b)		an aldehyde group is present in the methanoate group and will reduce Ag^{+}to Ag					1	1					
9.			Reagent(s) sodium carbonate iron(III) chloride (aq) bromine (aq) (1) for each correct row	Functional group identified carboxylic acid phenol alkene	Observation effervescence purple colouration bromine decolourised	3			3		3			
					Section A total	7	6	2	15	0	4			

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10.	(a)			angle $1 \mathrm{C}-\hat{C}-\mathrm{H} \sim 120^{\circ}$ angle 2 H-Ĉ-H ~109.5	2			2		
	(b)		acidified (sodium/potassium) dichromate $/ \mathrm{H}^{+}, \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ or acidified potassium manganate(VII) / $\mathrm{H}^{+}, \mathrm{MnO}_{4}^{-}$	1			1		1	
	(c)	(i)	$\mathrm{SeO}_{2}+4 \quad \mathrm{Se} 0 \text { (1) }$ oxidation number becoming less positive is reduction	1	1		2			
		(ii)	SeO_{2} only oxidises to an aldehyde / SeO_{2} does not produce a carboxylic acid			1	1			
		(iii)	$M_{\mathrm{r}} \mathrm{CH}_{3} \mathrm{CHO} \quad 44.04 / 44 \quad M_{\mathrm{r}} \mathrm{CHO}-\mathrm{CHO} 58.0 / 58 \quad$ (1)moles of ethanal $=\frac{22.0}{44.04}=0.500$moles of ethanedial $=\frac{20.0}{58.0}=0.345 \quad$ (1) \quad (mole ratio is 1:1)\% yield $=\frac{0.345 \times 100}{0.500}=69.0 \quad$ (1)award (3) for correct answer only (cao) error carried forward (ecf) possible		3		3	1 1		
	(d)	(i)	nucleophilic addition-elimination / condensation	1			1			
		(ii)	the melting temperature cannot be higher than the book value \therefore compound A cannot be propanal or cyclopentanone (1) if impure the compound will melt at a lower temperature than the expected value (1) and over a range of temperatures (1)		3		3		3	

[^0]

Question				Marking details	Marks available					
					A01	AO2	AO3	Total	Maths	Prac
11.	(a)	(i)		chloroethane / bromoethane		1		1		
		(ii)		 or in position 2 with respect to methyl group		1		1		
		(iii)		correct value of M_{r} from the graph (190) correct deduction of ' M_{r} ' of R group (43.1) correct formula of R group $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ (1) no ect		1	1	3	1	
		(iv)	1	electrical heating / oil bath (1) to avoid danger of fire / boiling temperature is greater than $100^{\circ} \mathrm{C}$ so a water bath cannot be used (1)	2			2		2
			II	acid chlorides are hydrolysed by moisture	1			1		1
	(b)	(i)		$\begin{align*} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{3} \mathrm{COO}^{-} \tag{1}\\ & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{HSO}_{4}^{-} \text {or } \\ & 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right)_{2} \mathrm{SO}_{4}^{2-} \end{align*}$ (accept if charges omitted)		2		2		

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
11.	(b)	(ii)			they all act as bases by donating lone pair to H^{+}(1) the more available the lone pair, the stronger the base (1) sensible comment on the order e.g. lone pair on nitrogen in phenylamine is delocalised to the ring electron system / ethyl group is electron releasing (1)	1 1	1		3		
	(c)	(i)		the phenol needs to be in alkaline solution (1) the temperature needs to be $10^{\circ} \mathrm{C}$ or less (1)	2			2		2	
		(ii)	I	the yellow dye contains a phenolic OH group and this acidic group is neutralised by aqueous sodium hydroxide (1) giving the (soluble) anion / ~~~ ONa^{+}(1)		2		2			
			II	when the solution becomes acidic, the (soluble) anion is replaced by the OH group to restore the insoluble yellow dye		1		1			
				Question 11 total	7	10	1	18	1	5	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
14.	(a)	(i)		any alkene molecules produced would react with hydrogen (forming the corresponding alkane)			1	1		
		(ii)	$\begin{align*} & \mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{(101000 \times 0.96)}{8.31 \times 323} \\ & \mathrm{n}=36.1 \\ & M=57.9 \tag{1} \end{align*}$	1		1	4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		
	(b)	(i)	$\begin{align*} & \begin{array}{l} \text { relative peak area } \alpha \text {-terpinene }=8 \\ \text { total relative peak area }=64 \end{array} \quad \text { both required (1) } \\ & \therefore \text { percentage of } \alpha \text {-terpinene }=\frac{8 \times 100}{64}=12.5 \tag{1} \end{align*}$			2	2			
		(ii)	```total percentage of \(\alpha\)-terpinene in the citrus oil \(=\frac{95 \times 12.5}{100}=11.9\) mass of \(\alpha\)-terpinene in the citrus oil \(=\frac{11.9 \times 3.2}{100}=0.38 \mathrm{~g}\) award (2) for cao ecf possible from (ii)```		2		2	2		

			1-2 marks: Description or reagents given for one step; one intermediate product identified The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks: The candidate does not make any attempt or give an answer worthy of credit.						
			Question 15 total	4	7	4	15	0	7

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	7	6	2	15	0	4
10.	5	9	4	18	2	6
11.	7	10	1	18	1	5
12.	9	5	3	17	0	1
13.	0	6	5	11	0	0
14.	2	5	7	14	5	2
15.	4	7	4	15	0	7
16.	2	6	4	12	4	12
Totals	36	54	30	120	12	37

[^0]: © WJEC CBAC Ltd.

